Cardiac PET

Positive Emission Tomography

Gordon Graham, MD, FACC
Disclosures

None
Objectives

The principle of PET
Differences in dosage of nuclear vs radiology studies
Advantages of PET and appropriate patient population
PET Scanner
Positron Emission Tomography: Basic Principle
Process for PET Stress

- Rb-82 50-60 mCi
- Dipy 0.56 mg/kg

- scoutCT-trans
 - 70-90 sec
 - 90-120 sec
- gated rest
 - pt out
- scoutCT-trans
 - 70-90 sec
 - 90-120 sec
- gated stress

Approx 1 min Approx 7 min Approx 6 min Approx 1 min Approx 7 min
Nuclear
Most radiation is wasted.

Radiology
98% efficient.
Radiation Dose

Thallium 70-80 KEV T ½ 73 hours

4 mCi Th

Test time

Exposure time

24 hours
Radiation Dose

Tc 140 KEV T ½ 6 hours

Exposure time

30 mCi Tc\textsubscript{99}

4 mCi Th

Test time

6 hours

24 hours
Radiation Dose

Rubidium 511 KEV T½ 60 seconds

60 mCi Rb

30 mCi Tc₉⁹

4 mCi Th

Test time 6 hours 24 hours

Exposure time
PET Instrumentation

Image originally published in Turkington TG. J Nucl Med Technol
SPECT Relative Activity

PET Absolute flow per gram of myocardium

Flow Reserve
Epicardial – COR
Myocardial - PET

Normal

Less
Advantages and differences of PET versus SPECT

- SPECT stress test takes approximately 2.5 to 3 hours minimum
- PET can be completed in less than 45 minutes
- PET eliminates the majority of patient attenuation seen with SPECT
- Images are much more clear and crisp. Think standard definition television versus high definition.
- Minimize LOS for inpatients
- PET requires a pharmacologic stress
- PET minimizes patient and staff radiation exposure
PET

- Lower radiation
- Higher sensitivity
- Higher specificity
- Especially useful as BMI increases
Why is PET not the standard? COST!

Capital Cost
- PET scanner $2.2 million
- Smaller secondary market
- SPECT $400,000

Radiopharmaceutical
- Cytotron
- Strontium 82 generator
- Rb82
- Krypton 82

Generator $8,000 week
- Rb dose $320
- Tc dose $70
- Th dose $60

Business decision
- Throughput vs cost
- False positive study in obesity = more normal COA
Patient population for PET

- BMI Greater than 40
- Large breasts
- Mastectomy
- Breast implants
- Chest wall deformity
- Pleural effusion
- Pericardial effusion
- Non-diagnostic SPECT
Questions?